• How Can 'Smart Water' Improve Oil Recovery?

How Can 'Smart Water' Improve Oil Recovery?

Mar 13 2020 Read 374 Times

A new study from Rice University could revolutionise oil recovery methods and drastically increase efficiency at reservoirs around the world. Developed by researchers at the university's Brown School of Engineering, the mechanism uses 'smart water' to enhance oil extraction and increase yield.

Sibani Lisa Biswa, a chemical and biological engineer at Rice University explains how she and her colleagues used microscopic saltwater droplets to emulsify crude oil and maximise recovery. To do this, the team carefully explored the characteristics of rock, water and crude, the three key elements needed to extract oil.

Optimising salt concentration levels

They found that productivity is heightened when water used to extract oil has ideal salt concentration levels that complement the both the crude and rock. When low-salinity brine has the capacity to create emulsion droplets in certain types of crude, it also alters what's known as the "wettability" of the rock. The team say wettability has a direct impact on interfacial tension and electrostatic interactions, which can impact how readily the oil is released from the rock.

To test the theory the researchers created two brines, one with high-salinity levels and another with 75% less salinity than seawater. They used the brines to extract six types of crude oil from Indiana limestone cores and found that the high-salinity brine actively prevented water droplets from emulsifying in crude oil.

Eliminating driving force to displace oil

The findings were published in the journal Scientific Reports, with co-lead author Jin Song explaining how the concept was inspired by wells in the North Sea. "Oil companies found that when they injected seawater, which has relatively low salinity, oil recovery was surprisingly good," he says.

Song and the team have labelled the concept 'smart water' and predict it could have a hugely positive impact on oil extraction techniques. "If you can alter your oil-wet sites to water-wet sites, then there's less of a driving force to hold the oil to the mineral surface," says Song. "In low-salinity water injection, the brine is able to displace the trapped oil. As you change from oil-wet to water-wet, the oil is released from the mineral surface."

While chemical surfactants such as soap are also an efficient way to displace oil in a reservoir, it adds a significant cost to the extraction process. Changing salt concentration to optimise brine salinity can have the same effect as a detergent at a fraction of the price.

While optimising efficiency is a top priority safety is always front of mind at oil reservoirs. Focussing on upstream and downstream oil and gas facilities, as well as other industries, 'How Optical Gas Imaging Tools Promote a Culture of Safety' spotlights the latest OGI technology

Reader comments

Do you like or dislike what you have read? Why not post a comment to tell others / the manufacturer and our Editor what you think. To leave comments please complete the form below. Providing the content is approved, your comment will be on screen in less than 24 hours. Leaving comments on product information and articles can assist with future editorial and article content. Post questions, thoughts or simply whether you like the content.

Post a Comment

Digital Edition

Petro Industry News July 2020

July 2020

In This Edition Safety - BM 25 & BM 25 Wireless: 10 years of improved safety - Discover the enhanced PS200 Fuel For Thought - FCI announces Adam Schleyhahn as Director of Sales - New...

View all digital editions


FlowExpo 2020 - NEW DATES

Aug 08 2020 Guangzhou, China


Aug 11 2020 Moscow, Russia

SIAF Guangzhou - NEW DATES

Aug 11 2020 Guanghzou, China

National Safety Show

Aug 12 2020 Auckland, New Zealand

IE Expo China 2020 - NEW DATES

Aug 13 2020 Shanghai, China

View all events