• Research Award Given for Establishing Traceability for Measurements of Mercury Vapour in Air

Fuel for Thought

Research Award Given for Establishing Traceability for Measurements of Mercury Vapour in Air

Dec 19 2008

The following research has recently been published in The Analyst (2008, 133,946-953), Britain`s Royal Society of Chemistry`s high-impact analytical science journal. This work has been recognised as one of the three most significant research papers in environmental science by CITAC (the Cooperation on International Traceability in Analytical Chemistry) and is one of the recipients of the `2008 CITAC Award for the Most Important Paper on Metrology in Chemistry`. This award is made to “highlight remarkable papers in the field of Metrology in Chemistry because of their important scientific content.”

Mercury is a highly toxic and persistent pollutant found in ambient, indoor and workplace air. It is released into the environment from sources such as coal-burning power plants, crematoria and waste treatment processes.

The vast majority of mercury vapour measurements currently undertaken are ultimately traceable to the vapour pressure of mercury. This is given in the scientific literature by several different empirical equations, but the agreement between these is not good, with data from different equations sometimes differing by 5% or more. There is also no current international agreement on which is the best equation to use.

In order to solve this important measurement issue, scientists at UK based NPL (National Physical Laboratory) have collaborated with P S Analytical (UK) to link mercury vapour measurements directly to standards of mass thereby establishing traceability for these measurements to the SI system of units. These measurements are therefore no longer dependent on mercury vapour empirical equations and, crucially, measurements carried out by different laboratories at different times using different equipment, can be compared with confidence.

These outputs from the research are of great importance to the environmental chemistry community, particularly those engaged in air quality determination, and have many applications. For example, the traceability can be applied to the UK heavy metals monitoring network, which is operated on behalf of Defra by NPL (see Environmental Measures Issue 4 - Winter 2007) and requires the measurement of the ambient mercury vapour concentration at 15 monitoring sites across the UK. Other applications include the measurement of mercury vapour in indoor and workplace air - this is a particularly important issue as indoor levels of mercury are generally greater than those outdoors, and typical exposure times are longer.

This research gives the UK an advantage in preparing for the introduction of new European ambient air legislation. For example, work is on-going to bring in a standardised automatic method for the analysis of mercury vapour in ambient air as a possible replacement for the manual method in use in the heavy metals monitoring network.

Digital Edition

PIN 25.2 Apr/May

May 2024

Safety - Carbon monoxide toxic and flammable gas detection Analytical Instrumentation - Density: A fundamental parameter at critical stages within the petroleum sector - Advancements and...

View all digital editions

Events

Sensors Converge

Jun 24 2024 Santa Clara, CA, USA

The National Safety Show

Jun 25 2024 Auckland, New Zealand

East Russia Oil and Gas Forum

Jun 25 2024 Vladivostok, Russia

Power & Energy Africa 2024

Jun 26 2024 Nairobi, Kenya

Downstream 2024

Jun 26 2024 Galveston, TX, USA

View all events