• Enhanced precision in biofuel analysis

Analytical Instrumentation

Enhanced precision in biofuel analysis

Dec 18 2023

Biofuels, sourced from renewable raw materials such as vegetable oil, animal fat, and recycled resources such as used cooking oil, play a pivotal role in advancing sustainable energy solutions. While traditionally blended with conventional fuels like gasoil and gasoline, biofuels are increasingly finding applications in other processes such as aviation and marine fuel production.

Accurate measurement of biofuels poses challenges, especially when determining sulphur values in blends with a specified maximum sulphur content. A notable complication arises from the higher oxygen concentration in biofuel samples compared to traditional fuels, disrupting typically straightforward X-ray Fluorescence (XRF) analysis, and potentially leading to misleading sulphur and chlorine concentration readings.

To address these challenges associated with renewable materials, a thorough study utilised XOS’ Sindie +Cl, a cutting-edge XRF instrument designed for comprehensive sulphur and chlorine measurement in biofuels. Correction factors, derived from the ASTM D7039 method, were strategically applied to neutralise oxygen interference, ensuring precise and reliable results. Sindie +Cl offers unparalleled advantages in biofuel analysis, including rapid and accurate testing, non-destructive analysis, and straightforward sample preparation. The main benefit is that the Sindie +Cl allows concurrent measurement of total sulphur and chlorine, streamlining the effective processing of incoming goods and quality certification of finished products.

In the experiment, diverse biofuel samples were selected, spanning B10 and B20 blends, gasoil, hydrotreated vegetable oil (HVO), rapeseed methyl ester (RME), soybean methyl ester (SME), tallow methyl ester (TME), and used cooking oil methyl ester (UCOME). Each sample underwent ten measurements under stringent repeatability conditions using Sindie +Cl, ensuring robust and consistent results.

The correction factors, tailored to Sindie +Cl’s analyser geometry, were derived from a mineral oil calibration curve. Notably, even samples like B10 and B20, which typically fall below the 3.7% oxygen threshold, were corrected. This approach becomes essential with the emergence of biofuel oils (BFO) containing higher biofuel concentrations, underscoring the instrument’s critical role in ensuring accurate measurement and certification.

In the dynamic landscape of biofuel certification, Sindie +Cl offers unparalleled precision and efficiency. By addressing oxygen interference through correction factors, this instrument streamlines the certification process, meeting regulatory standards and ensuring the accurate measurement of biofuel concentrations. Click here for the full article and data tables.


Digital Edition

PIN 25.4 Aug/Sept

September 2024

Analytical Instrumentation - Novel and Rapid LSC method for the analysis of biogenic carbon in fuels Measurement and Testing - Matrix evaluation on the Xplorer-V with Vectra autosampler accordi...

View all digital editions

Events

Africa Oil Week

Oct 07 2024 Cape Town, South Africa

13th St Petersburg International Gas Forum

Oct 08 2024 St. Petersburg, Russia

Enlit Asia 2024

Oct 08 2024 Kuala Lumpur, Malaysia

Ros Gas Expo

Oct 08 2024 St. Petersburg, Russia

Conferenza GNL

Oct 09 2024 Bologna, Italy

View all events