Applying different thermal introduction methods on the same mass spectrometer for a comprehensive chemical investigation of heavy fuel oil

Date: 09:00:00 - May 22 2019
Speakers: Uwe Kafer

Heavy Fuel Oil (HFO) is the most widely used marine fuel at this time and only a comparable small part is used for oil-fired power plants. It is derived from the residue after crude oil distillation and is characterized by a high viscosity, and requires heating for storage, pumping and burning. A critical factor is the high amount of e.g. sulfur and other heteroatomic compounds. Because of environmental and health implications the limits for e.g. sulfur has decreased constantly from max. 1.5% (before 2010) to max. 0.1% (since 2015) within Emission Control Areas (ECAs) and from max. 4,5% (before 2014) to maybe 0.5% (after 2020) in other sea areas. The related ongoing change in the composition of the HFO but also a variating feedstock makes a prediction of its compatibility with the different types of engines more and more difficult. In addition, the burning properties could be hardly derived from the physical specification of the HFO. A comprehensive chemical characterization of the HFO might be a starting point to predict the burning behavior of HFO better in the future. However, the chemical characterization of HFO is very challenging, since at least the heavier part of the oil can't be analyzed with high resolving chromatographically methods like gas chromatography and most other methods are either prone for artificial or biased detection. Therefore, a combined but comprehensive analysis of the volatile and residual part of the HFO would be beneficial. For this approach, a high-resolution time-of-flight mass spectrometer was hyphenated with different inlet methods to target the volatile and residual part of the HFO. The atmospheric vaporizable part of the sample was analyzed by GCxGC, while the residual part was analyzed with a thermobalance (pyrolysis, atmospheric pressure) and direct inlet probe (vaporization, reduced pressure). A set of HFO with different specifications were analyzed and the combination and integration of the results allowed the generation of a chemical fingerprint of the whole HFO. Due to a statistical analysis of the samples, it was also possible to identify characteristic chemical features for the different classes of HFO.

Free to watch

Sessions are free to watch. Please login to view this session or create an account.


Uwe Kafer
Uwe Kafer (Helmholtz Zentrum Muenchen)

Uwe Kafer completed his Master Degree in chemistry at the University of Regensburg in 2014. Afterwards he worked for ASG Analytik-Service GmbH, a company that is specialized in analysis of petroleum products. In June 2016 he started his PhD at the group CMA at the Helmholtz Zentrum Munchen. His research is focused on the chemical Analysis of petroleum vacuum residues and bitumen. The work is part of an AiF research project for bitumen characterization, which is carried out together with cooperation partner ASG. Because of the complex nature of heavy petroleum samples, multiple techniques are combined for a comprehensive analysis. LC-fractionation and High resolution Mass spectrometry take key roles in the studies. Different ionization methods and sample inlet systems for High resolution mass spectrometry are combined to investigate important mechanisms in the chemistry of heavy petroleum compounds.

Digital Edition

PIN 24.5 Oct/Nov 2023

November 2023

In This Edition Measurement and Testing - Comparison between NIR/FT-IR and 3rd Generation OP-NMR Technology - Refinery Boiler Replacement Project’s Air & Fuel Gas Measurement Challenges So...

View all digital editions


Biogas Convention & Trade Fair 2023

Dec 12 2023 Nuremberg, Germany

Turkey & Black Sea Oil and Gas

Dec 13 2023 Istanbul, Turkey

IGC 2023

Dec 14 2023 Roorkee, India

Americas Energy Summit and Exhibition

Jan 16 2024 New Orleans, LA, USA

Trinidad and Tobago Energy Conference 2024

Jan 22 2024 Port of Spain, Trinidad

View all events