
Advances that have or can be achieved in petrochemicals process 
analysis are primarily due to innovations in GC and spectrometry 
instrument design, or the application of sophisticated data analysis 
procedures, or the development of powerful modelling methods 
that allow inferential monitoring of processes.

Innovations in analyser design and operation  

Chromatography has been the mainstay of on-line process analysis 
in petrochemical plants for decades and has served the industry 
well. Although the fundamental use of gas chromatography 
has not changed, there have been useful advances in column 
technology and thermal conductivity detectors, miniaturisation 
of equipment, and the development of integrated and intelligent 
sampling and analysis systems. 

It might be argued, however, that advances in spectroscopy 
instrumentation offer more interesting opportunities for process 
analysis. For example, developments in micro electromechanical 
systems have enabled construction of smaller and potentially lower 
cost instruments. Laser developments are helping advance process 
applications of mid-infrared (MIR) and Raman spectroscopies, 
and the range of wavelengths covered by tunable lasers has 
increased. Applications of Raman spectroscopy are also benefiting 
from instrument design innovations to improve the sensitivity of 
measurements whilst maintaining high spectral resolution. Mass 
spectrometry is also growing in importance in petrochemicals.

Two examples of advances in photonic based devices are single 
photon avalanche diodes (SPAD) detectors and quantum cascade 
lasers. The big advantage of SPAD detectors is that they provide 
time correlated single photon counting, which is good for 
stand-off imaging and low photon intensity applications. QML 
Technology Ltd, a spin-out company from Bristol University, has 
recently reported the monitoring of methane emissions using their 
single photon LIDAR imager [1]. The analyser combines tunable 
diode laser absorption spectroscopy in a light detection and ranging 
format, with time-correlated single photon counting to enable 
detection and ranging of methane concentrations at a relatively low 
laser power. It seems that methane leak rates of less than 0.1 gram 
per second can be detected at a range of up to 90 m.

The characteristics of SPAD detectors are also ideally suited 
to remote sensing by Raman spectroscopy, as illustrated by 
the Fraunhofer Centre for Applied Photonics (F-CAP) based at 
the Strathclyde university campus [2]. The growing interest in 
hydrogen as an alternative fuel means that sensitive detection 
of hydrogen leaks from tanks, pipelines and other infrastructure 
is important. The use of a time correlated SPAD device to detect 
Raman scattered photons gives information on the position of 
the molecules, their composition and their concentration (Figure 
1). The analyser built at F-CAP allows simultaneous detection of 

hydrogen and two other molecules in air, water and nitrogen [2]. It 
has been shown that hydrogen concentrations below 0.1% can be 
detected at up to 35 meters, although it is believed that detection 
up to 100 metres is possible. 

Returning to hydrocarbon analysis, the development of quantum 
cascade lasers has opened opportunities to replace chromatography 
with laser absorption spectrometry for some measurements. Two 
potential applications in ethylene production are the detection of 
acetylene breakthrough when cracking ethane, and compositional 
analysis at the fractionation tower to quantify low concentrations of 
impurity molecules in ethylene such as methane, C2 molecules, and 
carbon monoxide and dioxide [3]. Both these applications need fast 
analysis with low limits of detection, which quantum cascade laser 
absorption spectrometry can provide.  

Another exciting application of quantum cascade lasers is in 
mid-infrared dual comb spectroscopy, which offers a number 
of potentially attractive features for process analysis. The 
spectrometer produced by IRsweep [4] uses two frequency comb 
QCLs which emit at many discrete wavelengths.  The two combs 
have very slightly different line spacings, which allow heterodyne 
detection to be used to produce MIR absorbance measurements. 
The technique has a number of attributes; from the perspective of 
process analysis, it is the high power output of the source that is 
attractive, which means longer lengths of MIR optical fibre (e.g. 10 
m to and from the process) can be used between the spectrometer 
and the in-line measurement probe [4]. The light sources in 
conventional MIR instruments normally only allow a couple of 
meters of fibre between the probe and spectrometer. 

Advances in multivariate data  
processing and modelling
Applications of near infrared hyperspectral imaging (HSI) are 
growing in importance. Although more widely applied in food 
analysis, interest in recycling plastics back to virgin monomer 
means that hyperspectral 
imaging is an option for 
high speed sorting of 
plastics. In HSI, material is 
scanned and image cubes 
comprising multiple spectra 
are produced. The challenges 
of high through-put process 
measurements are that a lot of 
images are generated, which 
require some pre-processing 
prior to analysis and the 
spectral information has to 
be combined with spatial 

data to produce comprehensive process models. These were the 
challenges that Puneet Mishra and Alison Nordon of the University 
of Strathclyde addressed through an EU Marie Curie funded 
project. They devised data analysis methods to de-noise spectra 
using Shearlet-based methods, optimised compression of the data, 
and combined spectral and visual information to improve modelling 
[5]. And they were able to automate these features for high through-
put operations.

The perennial problem of calibration model transfer in quantitative 
process analysis is another area of data processing where recent 
advances can have a positive impact in the petrochemicals 
industry. Building effective multivariate calibration models 
for analysis of multi-component mixtures is time consuming 
and expensive. If a probe or analyser has to be replaced, the 
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Figure 1: Schematic representation of measurement of hydrogen concentration in air by time correlated Raman spec-
trometry (Fraunhofer Centre for Applied Photonics).



performance of the model may be affected requiring re-calibration, 
which is not desirable. In this situation mathematical approaches 
which compensate for instrumental changes are desirable. Research 
in CPACT led by Professor Zengping Chen at Hunan University 
has led to the development of improved methods for transfer 
of multivariate calibration models without the need for full re-
calibration. One such method, Spectral Space Transformation (SST), 
eliminates spectral differences in the measured signals caused by 
a change in the instrumental set-up [6]. An example is transfer 
of a calibration model for analysis of a mixture of solvents when 
a change was required in the diameter of the mid-Infrared fibre 
optic probe used for in situ analysis. This is a problem that can be 
encountered when moving from a small to a large vessel such as 
from lab scale to pilot plant scale or to full scale manufacturing. The 
MIR probes use an attenuated total reflection (ATR) crystal to obtain 
a spectrum of the process mixture. When the diameter of the crystal 
is altered the spectrum changes, because the optical pathlength 
changes. This means that a multivariate calibration model built 
at small scale using a 3 mm diameter ATR probe cannot be use 
directly when making measurements in a larger vessel with a 12 
mm diameter probe, as shown in Table 1 by the root mean square 
error (RMSE) values for the prediction of the solvent concentrations. 
SST solved this problem and was simpler and faster to apply than 
Piecewise Direct Standardisation, which requires additional iterative 
optimisation of the data window size to achieve optimal results.  

Soft-sensor inferential analysis
Why is this area of research important in process analysis? One 
of the main drivers is the difficulty of making direct real-time 
measurements of key attributes that affect product quality in many 
aspects of manufacturing in the process industries. Especially when 
off-line laboratory based analysis is too slow to provide adequate 
control of these processes.

If, however, the status of the processes can be inferred by modelling 
combinations of variables that can be measured, better control can 
often be achieved, avoiding the manufacture of off-specification 
products. More specifically, by modelling the relationship between 
a primary output and secondary outputs and inputs, estimates 
of a difficult to measure primary output can be generated at the 
frequency at which the easily measured variables are measured. If 
sufficiently accurate, the inferred states of primary outputs can then 
be used for automatic control and optimisation of the process. 

Bootstrap aggregated models have proved useful for inferential 
analysis, but early successes have often been overlooked. One 
example from previous CPACT research involves the use of aggregated 
neural networks and partial least squares (PLS) models for inferential 
estimation of kerosene dry point under conditions when the feed crude 
oil changes [7]. In this situation, estimation of product quality by soft 
sensors becomes difficult because the relationship between process 
variables and product quality variables change when the crude changes. 
This required a two-step solution – to build an inferential model for 
each type of feed oil and use an on-line feed oil classifier to determine 
which model to apply. The on-line feed oil classifier was built using 
bootstrap aggregated neural networks, and bootstrap aggregated PLS 
regression models were developed for each feed oil. Sixteen measured 
process variables were used as inputs for the inferential estimation 
model. When tested on simulated and industrial data, it was 

shown that the procedure significantly improved the inferential 
estimation of the kerosene dry point. Table 2 shows that the root 
mean square error (RMSE) of industrial unseen validation data was 
lower for bootstrap aggregated PLS models for each specific oil 
type compared to the data for single PLS models. If estimations 
were made using a model built for a different crude oil, the RMSE 
values were 2-5 times higher than those in Table 2.

Another approach for quantitative parameter estimation is to combine 
mechanistic models based on physical and chemical knowledge of a 
process with data-based statistical models to create so-called hybrid 
models (Figure 2). CPACT researchers at Newcastle University did 
pioneering research in this area. An example concerns control of 
an industrial reactive distillation column used in the production of 
epichlorohydrin (EPI), which involves reaction of a mixture of alkaline 
agents and dichloropropanol isomers, with separation of the product 
through steam distillation [8]. The problem with this process is that 
there is an unwanted side reaction which should be minimised to 
improve the yield of the product. It was known that the amount of 
dissolved organic carbon (DOC) in the column bottom effluent was 
related to the side reaction, so the control strategy was to reduce 
production of DOC. Direct measure of DOC was difficult, but its 
level in the effluent was correlated with alkalinity.  Maintaining 
the alkalinity at the optimum level was a way to achieve optimal 
production of EPI. The solution developed started with a simple 
mechanistic model (based on knowledge of material balances and 
the kinetics of the process), and then a recurrent neural network 
model was used to capture residuals from the mechanistic model’s 
predictions of conversion of the reactants to the product. The hybrid 
model gave tighter control around the alkalinity set point which 
improved production of EPI; the standard deviation of the spread of 
alkalinity around the set point was reduced four-fold [8].

Future trends and challenges
The traditional approach in petrochemicals process analysis is to locate 
chromatographic and other analysers in an analyser house or shed and 
pipe gases to the shelter. There are clearly advantages in moving some 
analyses to the process, but how viable and acceptable is a transition 
from on-line to in-line measurement within the industry? How well will 
innovations in photonics, for example, allow adoption of in–process 
measurements in an intrinsically safe manner?  Such a transition from 
on-line to in-line analysis may be helped by the drive to build small, 
lower-cost and potentially faster analysers, but will they be capable 
of the chemical differentiation required for real-time control? Will 
deployment of multiple miniature analysers be necessary at the same 
location to provide collectively the required monitoring efficacy?

Then there is the challenge of making better use of the process 
data and the extent to which modelling data adds to process 
knowledge for better control. In particular, is there scope for wider 
use of soft sensors to augment chemical measurements or even 
replace some process analytics? 

A big area are the heart of industrial digitisation is the trust that 
can be put on data, and quantifying the effects of the propagation 
of measurement uncertainties through a multi-step process. In this 
area, there is a need for universally applied digitisation standards 
and frameworks that ensure best practice is followed. So, is there 
consensus on what is required and if so, which organisation will 
produce the standards and framework?

And finally, there is the issue of maintaining the appropriate level 
of knowledge and expertise within the workforce. How do we 
make sure that those with the required subject knowledge are 
attracted into the industry; and that there is sufficient opportunity 
and commitment to upskill the existing workforce?

Final comments
It is undeniable that timely provision of high quality analytical data 
is essential for safe and efficient operation of petrochemical and 
related processes.

However, there can be no doubt that energy and climate issues will 
increasingly dictate operational changes in the petrochemicals and related 
industries, which will bring new monitoring and control challenges.

Working in isolation is not an option in this respect and it will be 
important to encourage learning across industrial sectors, because 
many of the measurement and modelling challenges are similar. So 
cooperation is both sensible and probably essential.

This means that there is an ongoing need for communities of 
practice such as CPACT where analytical scientists and process 
engineers can be supported and where technical innovations can 
be devised and assessed.

About CPACT
The Centre for Process Analytics and Control Technology (www.
cpact.com) is the leading network for companies seeking advice 
and research on all areas of process performance monitoring and 
control. It was established in 1997 as an inter-disciplinary industry-
university “community of practice” to promote the development 
and use of advanced process monitoring and control techniques. 

The mission of CPACT is to enable the application of intelligent 
measurement and control technologies in the process industries 
through research, knowledge exchange and training. It supports 
scientists and engineers working in process analysis, chemometrics 
and statistics, and process modelling and control, through 
unique cross-sector cooperation. The current membership of 48 
organisations worldwide includes: academic and research institutes, 
manufacturers in the petrochemical, chemical, pharmaceutical, 
biochemical, food and materials processing industries; analytical 
vendor companies; and control system solution providers. 
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Reference Model built with  

3 mm diameter MIR ATR probe

Test data obtained with Acetone Ethanol Ethyl acetate

3 mm probe 3.7 3.0 1.1

12 mm probe 78.4 103.0 45.5

12 mm probe  

using SST model  

transfer with scaling

1.6 1.5 0.9

Table 1: Root mean square error (RMSE) for prediction of concentrations 

of mixed solvents using MIR ATR probes

Figure 2: Production of hybrid models by combining outputs from 
mechanistic and data based modelling
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single aggregated

Oil I 1.08      1.02

Oil II 1.39    1.22

Oil III 1.08    0.95

Oil IV 1.56    1.14

Table 2: RMSE of industrial unseen validation data for single and 

bootstrap aggregated partial least squares models for different crude oils
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