

Full Refinery Gas Analysis in 200 seconds using the 19" Flash RGA

Wilco Agterhuis, Ronald Verbeek, G.A.S – Global Analyser Solutions. Tinstraat 16, 4823 AA Breda, The Netherlands. T +31 (0)76 5411800. Email: info@gas-site.com. Website: www.gas-site.com

The Refinery Gas Analyser (RGA) analyses various streams of gases that are normally produced in an oil refinery. Examples are LPG, stack gases, flare gases, reformer gases and by-products of cracking and catalytic processes. The composition of these samples can vary considerably; it is a challenge to analyse different components like permanent gases, hydrocarbons and sulphur components in one sample correctly. An exact measurement is essential in reaching optimal control of refining processes and high product quality.

The Flash RGA delivers full analyses of a wide scope of sample streams in only 200 seconds. Complete characterisation is offered by fast analysis of 32 components. The instrument occupies little space, using the popular 19" standard industrial enclosure. The Flash RGA is based upon proven GC Technology like Valco® valves, robust GC detectors and standard available columns. The result is a very stable and reliable instrument.

Instrument Configuration

Refinery Gas Analysers can be found in many different configurations. The best approach is a no-compromise three channel instrument, because a wide range of components has to be analysed. One channel is dedicated to hydrogen, using TCD and argon or nitrogen as carrier gas. The thermal conductivity values of hydrogen and helium are almost identical and therefore the use of carrier gas helium would result in low sensitivity and a non-linear response curve for hydrogen. The second channel analyses all other permanent gases and C₂ hydrocarbons, using TCD and helium carrier gas. The third channel uses FID detection for detailed determination of hydrocarbons. A three-channel instrument might look complicated. But in practice it is more transparent compared to instruments with one detector and multi column switching. The three channels are simple and independent, making the setup for the instrument easy.

Several analysers based on CompactGC can be stacked in a 19" cabinet

Figure 1 shows the diagram of the Flash RGA. The analyser has 3 separate analysis channels; each channel has a back flush option to protect the separation column from high boiling components.

Figure 1: Flow diagram Flash RGA

Isothermal column temperatures are used for all channels. In this way, no additional cooling and conditioning time is needed, and the next analysis can be started immediately after the previous one. So cycle time equals run time.

All gas flows and pressures are digitally controlled. Robust Valco® valves are located in an independent heated valve compartment. Sample condensation is avoided in this way, and valve lifetime is enlarged. All channels have separate columns ovens, for optimal parameter setting, resulting in a short runtime. The analyser uses standard available capillary columns that can easily be changed by the user. The components are detected by standard GC detectors with a very reliable and robust instrument as a result.

Chromatograms And Results

Figure 3: Chromatogram channel 2, TCD

Figure 4: Chromatogram channel 3: FID

Component identification:

1 Helium	18 iso-Butane
2 Hydrogen	19 n-Butane
3 Methane	20 Propadiene
4 Carbon dioxide	21 Acetylene

Channel 1 determines helium and hydrogen, using TCD detection.

On channel 2, the sample is injected on two columns. A delay column is added to prevent simultaneous eluting of both columns on TCD. Carbon dioxide, C_2 -components and hydrogen sulfide are analysed, followed by oxygen, nitrogen, methane and carbon monoxide.

On channel 3, C_{6} + is back flushed to the detector, eluting as the first peak in the chromatogram, before C_1 - C_5 hydrocarbons. For this component group, FID is the preferred detector.

-		-
-		-
-		-
-		-
-		-
-		-
-		-
-	el asconda	
- Antiperty		*****

Figure 2: Chromatgram channel 1, TCD

5 Acetylene
6 Ethylene
7 Ethane
8 Hydrogen Sulfide
9 Oxygen
10 Nitrogen
12 Carbon monoxide
13 C ₆ +
14 Ethane
16 Propane
17 Propene

22 t-2-Butene 23 1-Butene 24 Isobutylene 25 c-2-Butene 26 Isopentane 27 n-Pentane 28 1,3-Butadiene 29 t-2-Pentene 30 2-me-2-Butene 31 1-Pentene 32 c-2-Pentene

August/September 2009

Measurement and Testing 37

	prod.	(mail 100mail)	(great)	Man frentier	(gC))	GALLER CALLER	AJ101g
100.0							
-0	1.00	10.00	2.04				-
rs.		14.00					10.000
TOPI	1						
CERT	1.34	1 100	48.01	132.000	1.77	1.00	
Ovygeni	2.90	0.196	31.998	4,372	0	. 0	
Nationagent.	8.397	38.101	28.013	106.736			
Calormonite	4.782	8,000	28.01	37.90	8.428	0.001	8.67
Fill Ann							
Methalia	1.757	1.06	16.047	80.013	0.7407	1.81	122.36
Ethate	1842	210	31.07	118 175	4.788	2844	168 181
Eliana	1.00	100	20.054	10.445	0.040	1.4%	60.21
France	2041	1.547	44.007	282 344	4.8071	6.455	306.111
Proprieta + Cyclineratorie	1 2207	1016	42.001	126.879	0.0003	3.315	1Fx 96
Frankers	1.81	6.994	40.588	29.564	1.004	1.073	98.25
Austriana	2.83	1.00	26.036	36.012	0.073	8.729	37.000
too-Butane	3:479	4.965	68.125	208.00	0.009	7.100	208, 101
N-D-dara	247	3 394	98 125	252,140	0.036	6.781	319.75
Trans 3 dates	3.01	1990	16.10	1 167.706	0.0003	4.338	227 (8)
1.8dute	8.10	1 100	66.108	10140	0.000	2.875	HEJ CHI
too-Butylena	3,278	6.98	06.11	05.005	0.0163	1.462	75.75
Cis-2 buterie	3.34		96.106	96.128	0.000	1.447	76.36
Intel Pantana	1.003	1. 1.997	72.16		0.004	1.804	98.06
13Básáre	3.80	2.907	84,000	162.113	0.000	4.308	217.48
s.Paniate	4.008	6.86	72.9	71.428	0.0334	1,794	97 504
Tani J Patera	4.601	0.198	86.177	17.140	0.6303	0.430	23.34
3-Methyl-3-Bulere	4.817	0.199	86.577	17:549	0.6363	0.432	28.36
5-Percent	4.87	\$309	96.177	34.96	0.0005	0.806	46.73
Co-3-Periene	4.798	6.299	86.107	26.767	6.683	644	38.02
adactes.	1.00	8.0%	06.177	8.116	0.083	0,008	311.348
TOTAL		-				11.00	2906.4478
ALC: NOTE: NOTE: NOTE: NOTE: NOTE: NOTE: NOTE: NOTE: NOT: NOT: NOT: NOT: NOT: NOT: NOT: NOT						Tatal Cathen	Calarille Value

Figure 5: Additional report for CO_2 emission measurement according to DIN 51.666

Repeatability is better than 1% RSD at 1% concentration level for all specified components. The linearity is 4 decades. Minimum detectability is better than 0.01% (0.05% for H_2S). High levels of H_2S are handled without affecting the instrument, because inert Sulfinert[®] treated materials are used.

Data Handling and DIN 51666 Reporting

The EZChrom data system is used for data handling for

the three analysis channels, providing all needed processing, reporting and quality control features.

Refinery Gas Analysers are also used for CO_2 emission measurements according to DIN 51.666. For this analysis, additional reporting of calorific value and carbon content is needed. EZChrom was extended with a report template for the necessary calculations. This template combines concentration values for three detectors to normalised results, and multiplies each concentration with the appropriate factor to obtain the needed emission values.

Benefits:

- Full Refinery Gas Analysis in only 200 seconds
- Including reporting according to DIN 51.666
- Meets requirements of UOP539, DIN51.666, ASTM D2163
- No additional cooling time: run time=cycle time
- Proven GC technology: reliable and robust
- instrument
- Full digital control

Note: The 19" Flash RGA from G.A.S follows the proven three channel setup that is found in larger laboratory analysers like the Fast RGA based on Thermo Trace GC (see figures 6 and 7).

Figure 6: laboratory Refinery Gas Analyser

Figure 7: flow diagram laboratory Refinery Gas Analyser

