
Essentially, through the use of renewable or nuclear power, CO2 
and water can be converted to hydrocarbon fuels. The conversion 
process consists of 4 main stages as shown in Figure 1. The first 
process; first is the collection of energy. With the environmental 
impact of energy collection in mind, sources would ideally 
consist of wind farms, solar farms, or nuclear sources. Next is the 
collection of H2O and CO2 for conversion. In the case of these 
electrofuels (e-fuels), sustainability is primarily dependent on the 
availability of carbon capture and storage technologies, as well 
as the efficiency of the conversion process. The sustainability of 
synthetic hydrocarbon fuels is largely dependent on the source of 
the feedstock. Due to the nature of CO2 and H2O as feedstock, 
the process is scalable. In initial, localized projects, CO2 could be 
captured from industrial sources, such as factories. As projects 
expand and multiply, the ideal scenario entails carbon capture 
directly from the atmosphere [1]. Just as CO2 is fairly abundant, the 
sourcing of H2O in large quantities is fairly straightforward, with 
seawater readily available. 

Third, the oxides must be dissociated to create syngas, a mixture 
of CO2 and H2O. Finally, the syngas must be synthesized into 
usable fuel. For each step exists various technological avenues 
which must be examined to develop a streamlined and efficient 
process. The current state of the technology indicates that the 
high-temperature electrolysis of H2O and CO2 in a solid oxide cell, 
resulting in CO and H2, coupled with catalytic fuel synthesis, is a 
promising route. This paper seeks to summarize and reflect on the 
existing state of the art, as well as recommend avenues for further 
research and optimization.

Collection
After the collection of energy, ideally from renewable sources, 
the raw feedstock must be amassed. For the purposes of 
collection, CO2 can be classified into two categories:; atmospheric 
and non-atmospheric. Historically, non-atmospheric CO2 has 
been successfully captured from industrial plants [3]. Another 
non-atmospheric source of CO2 that should be considered is 
geothermal vents and their respective power plants. Some research 

exists regarding the collection of CO2 from Icelandic vents [3]. 
When considering large-scale projects, however, the collection of 
atmospheric CO2 should be prioritized. 

The extraction of atmospheric CO2 from the air dates back to the 
1940s when an alkaline absorbent was first used to obtain CO2 
from the air. The use of alkaline absorbents is by far the most 
popular method of CO2 collection. Typically, metal hydroxides, 
including KOH and NaOH are used to react with CO2 to form 
carbonates, typically in the form of solutions [4-8]. 

The chemical reaction in these collections is: CO2 + 2OH- → 
CO3

2- + H2O

Once the CO2 is absorbed, the absorbent must be regenerated 
with electrical or thermal energy.

Also used are carbonate solutions, which absorb CO2 and form 
bicarbonates [9-13]. 

With carbonate collection, the reaction proceeds as follows: CO2 + 
CO3

2- + H2O → 2HCO3-

The benefit of carbonate collection is that the CO2 forms weaker 
bonds with the carbonate than with a hydroxide. This translates to 
less energy being needed to release the CO2 and regenerate the 
absorbent for future use. However, this also means that absorption 
into the carbonate would require either increased contact with the 
air or more absorbent. A study examining the energy requirements 
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Figure 1: CO2-recycled synthetic fuel cycle [2] 



for various methods of air capture showed that a dilute carbonate 
solution required the least amount of energy. Practically, however, 
the absorption rates of a carbonate solution could be too slow to 
be used in a large-scale project. 

Naturally formed mineral carbonates have also successfully been 
used to capture CO2 from the air. Nikulshina et al. studied the use 
of CaO and Ca(OH)2 particles in carbon capture [14]. The particles 
were carbonated at 350-450 degrees Celsius, resulting in CaCO3, 
which was then calcined at 800-875 degrees CelciusCelsius 
to release CO2. Also, to be considered arethe methods of CO2 
absorption optimization ought to be considered. One particularly 
interesting area of the technology involves the geometry of the air 
contactor. Packed beds [15] and spray towers [16] are promising 
methods of air contact. 

After being captured in a medium, the  capturing the CO2, the 
carbon dioxide must be released from the capture medium, and 
the capture medium must be prepped for reuse. In the case of 
alkaline solutions, this process can be electrically driven through 
electrodialysis [17-20] or thermally driven in the case of calcifying 
carbonates [6, 15, 18, 21-24]. Also to be consideredConsiderations 
must be made for the in the  electrolysis of the spent absorbent 
as well. This process would integrate the regeneration of the 
absorbent with the dissociation stages of H2 and O2. As most 
practical CO2-derived fuel processes involve the production of H2, 
the production of H2 and O2 along with the release of CO2 provide 
a unique opportunity for energy efficiency. The main disadvantage 
to this method is that O2 and CO2 are released into the same 
compartment of the electrolysis stage. Separating the two would 
require another step of gas-phase separation. Alternatively, the 
use of a three-compartment cell with separate releases of carbon 
dioxide and dioxygen has been proposed, which would eliminate 
the need for a separation stage [25-27]. 

For large-scale e-fuel projects, ideal water sources would be 
seawater. While this would add the step of desalination to the 
process, the fiscal impact would be minimal. With the addition 
of desalination, the end cost of one gallon of synthetic gasoline 
would only increase by less than a cent.

Dissociation
The next stage in the process is the dissociation of H2O and 
CO2. This stage of the process can be approached in several 
ways. Electrical energy and electrolysis can be used to power 
the dissociation. When considering the general cost of energy, 
however, the use of thermal energy may be advantageous over 
electricity. The dissociation of H2O into H2 has been the subject 
of far more research than CO2 dissociation. Once obtained, it is 
possible to use hydrogen to reduce the CO2 to CO through the 
reverse water-gas shift reaction: H2 + CO2 ⇄ H2O + CO

Alternatively, CO can be used to reduce H2O to H2 in the water-gas 
shift reaction, the reverse of the above. 

An alternative to electrolysis is thermolysis, which uses thermal 
heat to form syngas. Overall, thermolysis is a theoretically optimal 
method for H2O and CO2 dissociation. Full thermolysis occurs 
at temperatures exceeding 3000-4000 degrees Celsius. For H2O 
alone, however, a temperature range of around 2000-2500 
degrees Celsius is acceptable [28-30]. While the combustion of 
fuel in a chlorine or oxygen atmosphere could be used to reach 
the desired temperatures, this would be counterintuitive, as more 
fuel would be used than produced. Therefore, electric and solar 
furnaces should be used to provide the high temperatures needed 
for thermolysis. 

Jensen et al. developed a thermolysis chamber for CO2 utilizing 
concentrated sunlight. The observed peak energy conversion was 
around 5%, with projections of a 20% yield in the future [31-32]. 
Though the conversion value is low, the process also produced 
unused heat, which could be converted into electrical energy to 
boost efficiency. If a 20% yield is obtained and the unused heat 
is utilized, the overall efficiency of the process would be roughly 
50%. However, the thermolysis process is more expensive to 
keep stable, requiring materials that remain stable at elevated 
temperatures and multiple steps of heat management. This may 
outweigh the advantages of high efficiency. Another concern is 
the stability of materials within the chamber. The chamber reaches 
upto upwards of 2400 degrees Celsius with direct sunlight. 
However, due to rapid changes in the solar accessibility from 
clouds and other obstructions, thermal shock is a concern. Though 
this subset of dissociation shows promise, the expenses and 
requirements are so elevated that the development of a financially 
practical process is unlikely. 

Dissociation can also be achieved via thermochemical cycles 
through a series of thermally driven reactions. The primary 
advantages of thermochemical cycles as a method of dissociation 
is are that product separation is inherent in the process and the 
process is carried out at lower temperatures than thermolysis. 

Typically, two-step cycles are  used. First, the metal oxide is 
reduced, resulting in the O2, and then oxidizing the metal by 
reaction with H2O or CO2, producing H2 or CO: 

MxOy + heat → MxOy-1 + 1/2 O2 (g)

MxOy-1 + H2O → MxOy + H2 (g)

Typically, these cycles are driven by concentrated sunlight [29, 30, 
33] or nuclear reactor heat. The first step in the two-step cycle 
typically requires temperatures as high as 2000 degrees Celsius. 
With high-temperature dissociation comes the same pitfalls as 
with the thermolysis processes,; namely material stability and 
thermal management expenses. Some two-step cycles aim to 
overcome these setbacks and achieve lower reaction temperatures. 
Some promising research exists regarding the use of modified 
ferrites with Co, Ni, or Mn substitution, as well as the use of ceria 
materials as the oxidation-reduction media.. These methods have 
been successfully used to dissociate H2O [34-41] as well as CO2 
[34, 40, 42] to yield syngas. The reduction temperatures for cycles 
using these materials are sub-1500 degrees Celsius. Furthermore, 
ceria-based materials as a redox medium show promise, with 
stable performance after hundreds of cycles [40]. 

While these cycles are the most researched, hundreds of other 
possible cycles have been identified with various operating 
temperatures [43]. Realistic efficiencies for net solar-to-chemical 
energy conversion are estimated to be 16-25%. While the 
use of thermal cycles remains promising, until the margins of 
efficiency can be improved, it is not suitable for wide -scale e-fuel 
production.

Electrolysis is the simplest of all dissociation methods. An 
electrolysis cell dissociates the molecules using electrical energy 
in a single step. The products are released separately, eliminating 
the need for gas-phase separation. Also of note is the ease of 
integration with renewable energy sources. The addition of a 
photovoltaic cell for power is far easier and more scalable than 
the use of solar furnaces. Typically, solar furnaces would require 
mechanical sun tracking to concentrate the sunlight to reach 
high temperatures. With an electrolysis cell and PV cell, such a 
system would be unnecessary, making the method ideal for mass 
production [2].

Fuel Synthesis
Once the dissociation process is finished, the energy-rich 
components can be catalyzed into syngas. The obvious method by 
which the fuel should be synthesized is Fischer-Tropsch synthesis 
(FTS). FTS was developed in the early 20th century and has been 
successfully used in coal-to-liquid projects [44]. 

The reaction is as follows: 2H2(g) + CO(g) → _CH2
_(l) + H2O(g) + 

165 kJ(at 400 K)

Depending on the catalysts used, syngas composition, and 
temperature and pressure conditions, various hydrocarbons can 
be produced. Temperatures around 300-350 degrees Celsius yield 
gasoline, while lower temperatures around 200-240 degrees 
Celsius yield diesel. Methanol can also be produced via a similar 
process. Methanol synthesis is typically performed by reforming 
syngas over a Cu-ZnO/Al2O3 catalyst. 

The reaction is as follows:  CO(g) + 2H2(g) → CH3OH(l) + H2O(g) + 
128 kJ(at 298 K)

High methanol selectivity is achieved in high pressure, low-
temperature conditions. A similar reaction can achieve methanol 
synthesis from CO2 and H2 [45]:

CO2(g) + 3H2(g) → CH3OH(l) + H2O(g) + 87 kJ(at 298 K)

This process has been carried out with a methanol synthesis 
reactor at temperatures around 200-300 degrees Celsius and 
pressures ranging from 50-100 bar [18].

Overall, FTS is by far the most studied and tested method of fuel 
synthesis and should therefore be considered the prime avenue for 
large-scale synthesis projects. 

Challenges with E-fuels
The largest challenge with e-fuels is the amount of energy 
required for the overall process.  Figure 2 displays the amount of 
energy required for three different options.  The first alternative 
uses e-fuel, which requires 1 MJ of energy to provide 150 kJ of 
locomotion.  The second alternative simply uses the electricity 
directly for propulsion, resulting in 900 kJ of the original 1 MJ 
going towards locomotion.  The third option uses a hydrogen fuel 
cell, where 420 kJ of the original 1 MJ goes towards locomotion.  
As such, there is a significant amount of wasted energy in the 
process.  In an ideal world, this would not be an issue since the 
energy is being sourced from renewable sources (i.e., they all 
have the same zero carbon footprint).  However, there would be 
competing markets for the same energy and wasted energy would 
equate to lost revenue.

The overall benefit of e-fuels is that they do not require an 
overhaul of the vehicle fleets.  Most vehicles could readily swap 
out diesel or gasoline for the appropriately produced e-fuel.  As 
such, it is a good stop-gap measure to reduce the dependency 
on fossil-based fuels and reducing the carbon footprint of the 
transportation industry.  However, unless the production efficiency 
can be substantially increased through the aforementioned 
advancements, e-fuels will simply not be feasible.

 Figure 2: Comparison of three different pathways to provide locomotion

Conclusion
In the past 50 years, the use of fossil fuels as a chemical energy 
source has continued to grow. Though nuclear and renewable 
energy sources display remarkable potential, the transportation 
sector is arguably more receptive to the continued use of 
hydrocarbons over carbon-free energy carriers. Liquid hydrocarbon 
fuels have a higher energy density than alternatives, as well as an 
existing infrastructure in vehicles and distribution. As such, the 
sustainable sourcing of hydrocarbons from renewable resources is 
an extremely desirable goal. 

Carbon dioxide and water are the most obvious feedstock, as they 
are both readily available. The first task is collection. The ideal 
method of collection for CO2 is through the use of hydroxides or 
carbonates to scrub the air and form carbonates and bicarbonates, 
respectively. Initial implementation of carbon-capturing should be 
focused on capture from industrial plants or geothermal vents. As 
carbon capture technology develops and becomes more efficient, 
the collection of CO2 can become a location-independent process. 
For water, desalinated seawater is a practical and economical 
source. 

Once the feedstock is amassed, the molecules must go through 
a dissociation process. This process is the most energy-intensive 
portion of the e-fuel process. As the overall goal of such a project 
is to reduce the dependence on fossil fuels and source energy 
sustainably, the energy for the dissociation should be sourced 
from renewable or nuclear options. Thermochemical cycles are a 
promising method of dissociation. However, the high-temperature 
nature of the reaction presents several challenges, including 
thermally stable material sourcing and heat management. 
While solar furnaces have been used to reach the desired high 
temperatures, due to the intermittent availability of direct sunlight 
and the need for sun-tracking technology, solar energy would be 
better harnessed through PV cells. These solar receptors could be 
attached to an electrolysis cell, which would be used to dissociate 
CO2 and H2O into CO and H2, respectively. 

 As the building blocks for all hydrocarbon fuels, the syngas 
components can be synthesized, with the help of a catalyst, 
through the Fischer-Tropsch synthesis reaction. This reaction has 
been successfully used to achieve liquid hydrocarbons. Additionally, 
methanol synthesis reactors have been used to produce gasoline 
and diesel products. 

Currently, the dissociation stage of the process is the weakest 
link. With the highest energy requirements and low efficiency, 
the processes and equipment need further optimization for 
e-fuel synthesis to become widely used. As sufficient literature is 
published on the optimization of the dissociation process and the 
efficiency is improved, the use of synthesis techniques to recycle 
H2O and CO2 will become sustainable and widely adopted. 
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